Hybrid Training of Feed-Forward Neural Networks with Particle Swarm Optimization
نویسندگان
چکیده
Training neural networks is a complex task of great importance in problems of supervised learning. The Particle Swarm Optimization (PSO) consists of a stochastic global search originated from the attempt to graphically simulate the social behavior of a flock of birds looking for resources. In this work we analyze the use of the PSO algorithm and two variants with a local search operator for neural network training and investigate the influence of the GL5 stop criteria in generalization control for swarm optimizers. For evaluating these algorithms we apply them to benchmark classification problems of the medical field. The results showed that the hybrid GCPSO with local search operator had the best results among the particle swarm optimizers in two of the three tested problems.
منابع مشابه
PSO optimized Feed Forward Neural Network for offline Signature Classification
The paper is based on feed forward neural network (FFNN) optimization by particle swarm intelligence (PSI) used to provide initial weights and biases to train neural network. Once the weights and biases are found using Particle swarm optimization (PSO) with neural network used as training algorithm for specified epoch, the same are used to train the neural network for training and classificatio...
متن کاملTraining of Feed-Forward Neural Networks for Pattern-Classification Applications Using Music Inspired Algorithm
There have been numerous biologically inspired algorithms used to train feed-forward artificial neural networks such as generic algorithms, particle swarm optimization and ant colony optimization. The Harmony Search (HS) algorithm is a stochastic meta-heuristic that is inspired from the improvisation process of musicians. HS is used as an optimization method and reported to be a competitive alt...
متن کاملTraining neural networks with ant colony optimization algorithms for pattern classification
Feed-forward neural networks are commonly used for pattern classification. The classification accuracy of feed-forward neural networks depends on the configuration selected and the training process. Once the architecture of the network is decided, training algorithms, usually gradient descent techniques, are used to determine the connection weights of the feed-forward neural network. However, g...
متن کاملUsing Particle Swarm Optimization to Pre-Train Artificial Neural Networks: Selecting Initial Training Weights for Feed-Forward Back-Propagation Neural Networks
Performance 1 of supervised training of Artificial Neural Networks (ANNs) depends on several factors, including neural network architecture, number of neurons in hidden layers, the neurons' activation functions, and selection of initial network parameters (connection weights). Trial and error is commonly used to select the network parameters and the initial connection weights. Such practice can...
متن کاملUsing CODEQ to Train Feed-forward Neural Networks
CODEQ is a new, population-based meta-heuristic algorithm that is a hybrid of concepts from chaotic search, opposition-based learning, differential evolution and quantum mechanics. CODEQ has successfully been used to solve different types of problems (e.g. constrained, integer-programming, engineering) with excellent results. In this paper, CODEQ is used to train feed-forward neural networks. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006